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DYNAMICAL THEORY OF ELECTRON DIFFRACTION FOR THE
ELECTRON MICROSCOPIC IMAGE OF CRYSTAL LATTICES

II. IMAGE OF SUPERPOSED CRYSTALS (MOIRE PATTERN)

By H. HASHIMOTO,t M. MANNAMI{ AND T. NAIKI{
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The dynamical theory of electron diffraction is applied to the interpretation of electron micro-
scopic images of moiré patterns. Two cases often observed are treated. One is the case where two
plate-shaped crystals are superposed closely without a vacuum layer between them and another
is the case where two crystals are superposed with a vacuum layer between them. Resolved lattice
images of two superposed crystals are also interpreted. The intensity profiles of the images vary with
the thicknesses of the crystals and vacuum layer and with the deviation from the Bragg angle.
The shifts of the fringes and anomalies of the contrast which are expected from the present theory
were observed in the electron microscopic images of moiré patterns of cupric sulphide, palladium-

Y B \

:é gold and platinum-phthalocyanine. The relation between moiré patterns and crystal structure
— > is also discussed.
=
8 28] 1. INTRODUCTION
~ . . . . .
= Q In the electron microscopic image of superposed crystals, uniformly spaced fringe systems
Eg have been reported by several workers recently. Mitsuishi, Nagasaki & Uyeda (1951)

first observed moiré patterns for graphite crystals and after their observation, Seki (1951,
1953) observed the same for the mineral sericite, Bernard & Pernoux (1953) for lead iodide
and molybdenum oxide, Hillier (1954) for iron oxide, Dowell, Farrant & Rees (1956,
1957) for MoO, smoke crystals, Hashimoto & Uyeda (1957) for copper sulphide, Pashley
Menter & Bassett (1957) for metal crystals, Goodman (1957) for boron nitride, Dawson &
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DYNAMICAL THEORY OF ELECTRON DIFFRACTION. II 491
Follett (1959) and Izui (1959) for graphite. Rang (1953) and Méllenstedt & Duker (1953)

observed essentially moiré fringe effects between two lamellae of mica and molybdenum
sulphide. There are two kinds of interpretation of this fringe system; one is a double-
diffraction interpretation which was first proposed by Mitsuishi, Nagasaki & Uyeda (1951)
and by Seki (1953), and another is an interpretation which considers a moiré pattern as
representing the regions of matching and mismatching between two rotated overlapping
lattices and was proposed by Hillier (1954). These were shown to be closely linked by Dowell
etal. (1956, 1957). They have shown that the fringes are in fact moiré patterns, the formatlon
of which depends upon the occurrence of double diffraction.

The moiré pattern, however, became considerably more important when it was realized
that an edge dislocation in one of the lattices is imaged in the moiré pattern. This was shown
independently by Hashimoto & Uyeda (1957) and by Pashley, Menter & Bassett (1957)
using rotation moiré patterns and parallel moiré patterns respectively. In both cases, an
extra terminating half-line appeared on the moiré pattern corresponding to a dislocation
in one of the lattices. Hashimoto (1958) has shown that the spacing anomalies and stacking
faults in the lattices are also revealed in rotation moiré patterns. Bassett, Menter & Pashley
(1958), by superposing thin films which were prepared separately and by using two epi-
taxially grown films, examined the moiré pattern. They discussed the mode of formation
of moiré patterns in detail and the effect of a general dislocation on the moiré pattern.

The relation between the moiré pattern and the crystal structure was first discussed by
Dowell ef al. (1956) in a certain limiting case. They consider the case of two identical over-
lapping crystals with small rotational misorientation in terms of the kinematical theory of
electron diffraction and have pointed out that the pattern may represent the Patterson
function of the crystal projection.

More general and detailed theoretical studies have been done by Cowley (1959) and
Cowley & Moodie (1959) by approximating the crystals to phase gratings. Cowley (1959)
discussed the contrast of the images of two thin superposed crystals and suggested that the
background intensity, the contrast and the phase of the moiré pattern will vary widely with
the structure factors, crystal thicknesses and excitation errors for the two crystals. Cowley &
Moodie (1959) treated the case where the two thin crystals were separated by an arbitrary
distance. They discussed the contrast of moiré patterns from separated, rotated and unlike
pairs of crystals. They also discussed possible applications of moiré patterns to structure
analysis.

For the crystals thicker than several tens of angstroms, the dynamical interaction of
electrons with a crystal cannot be disregarded. The present authors, then, have interpreted
the intensity distribution of several moiré patterns by using the dynamical theory of electron
diffraction developed first by Bethe (1928). Under the two-beam approximation, the cases
where the two plate-shaped crystals are superposed with and without a vacuum layer
between them have been treated. Absorption of electrons by the crystals and divergence of
the illuminating system are neglected because the effect of them can be estimated from the
previous considerations of the image of single crystals (part I).

Theoretical interpretations are compared with observed images and the application of
moiré patterns to crystal structure analysis is also discussed.

The notation used in this paper is similar to those in the preceding paper (part I).

6o Vor. 253. A.
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492 H. HASHIMOTO, M. MANNAMI AND T. NAIKI ON THE

2. CLOSE SUPERPOSITION OF TWO PLATE-SHAPED CRYSTALS
(a) Wave functions of moiré patterns

As was pointed out by Mitsuishi ef al. (1951), Seki (1951) and Dowell ¢z al. (1956, 1957),
the moiré pattern in the electron microscopic image of crystal lattices is formed as the
interference fringes of the transmitted primary wave and the secondary wave successively
reflected by the lattice planes in two superposed crystals. In this section, the wave function
and intensity distribution corresponding to the well-focused image by an ideal lens and
axial illumination are derived. As the first step of this interpretation, we treat the case
where two crystals A and B with different thicknesses Z, and Z, are superposed closely
with a small rotation angle ¢. The surfaces of crystals A and B are named q, b, and ¢, d

respectively. In the present case, the & surface coincides with the ¢ surface.
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Ficure 1. (a) The dispositions of the two crystals and the paths of the electron waves;
(b) waves in vacuum and the crystals. :

When a plane wave W(r) = Pexpj(K-r), (2:1)

where j= 2m,/—1 enters a crystal A through surface ¢ and one of the lattice planes g
of the crystal is at the Bragg angle, four waves y{(r), y3(r), y}(r) and y%(r) are formed in
crystal A. As shown in equations (10) and (15) of part I, they are expressed as

¥i(r) = yiexpj(ki-r), (2-2)
where [ = 0,g;7=1,2 and
c'c? —1
¥ = i Cz( ) Yexpj(K—kj-R,), (2-24)
i = O,

It can easily be known that each of the four waves in crystal A forms four waves in the
crystal B when they enter crystal B and are reflected by lattice planes 2 and —# respectively.
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DYNAMICAL THEORY OF ELECTRON DIFFRACTION. II 493

Therefore, 16 waves are formed in crystal B. They are expressed as
5(r) = figexp (ki 1),
i et {2-3)
() = yijexpj(kj 1),
where j = 1, 2. When these 16 waves pass out to the vacuum it is apparent that they become
4 waves, because the exit surface is parallel to the entrance surface. They are expressed as

Dyy(r) = Dyexp (K- r)a}

D,(r) = O expj(K,, - 1).
The dispositions of the two crystals A and B and the paths of the electron waves are illu-
strated in figure 1.

The dispersion surface construction which determines wave vectors and the ratio of the
amplitudes of primary and reflected waves is illustrated in figure 2. The dispersion surface
construction for the crystal A is the same as that shown in figure 2 of part I. For the crystal
B, however, two dispersion surfaces have to be constructed, because the two primary
waves ¢y, and ¢, in the crystal B advance to O and G, and are reflected by the 4 and —#4
plane respectively.

The wave points and corresponding wave vectors in the crystals for a given wavevector
K in vacuo are determined by the requirement of tangential continuity of the wave vectors
on the crystal surface. Wave points obtained by the requirement of tangential continuity
are shown in figure 2.

The amplitudes ¥, ¥, @, and @, are determined in terms of ¥ by the boundary
conditions on the plane 6 (=¢) and d. As was pointed out in part I, in transmission
electron microscopy the waves enter the crystal nearly normal to the surface. The normal
components of all wave vectors therefore are large compared with the difference among
themselves. In such cases, tangential continuity of wave vectors implies continuity of
normal derivatives. Then the boundary conditions on both boundary surfaces are expressed

as Vi(r,) = gib (r,) +@i2(r,)
0 = g} (r,) +3(r,)

2 (dia(ra) +4i5(ra) = q)zo(rd)}
' on the d plane. (26)

(2-4)

} on the 4 plane. (2-5)

2 (Bik(ry) +8i(rs) = Dy(ry)

i

By referring to equation (15) in part I, we can obtain the following amplitudes from
equations (2-2) and (2-5)

—C#2
ll C’l nggﬁlexp.‘(kt k;(l) b),

. Ccil , e .
¢i5 = m¢;expj(k;— i Ry)s

(2-7)
;’ll Czl C;2 %zl exp](kl k;(% b))
cic )
12 = Czl C’Z %l exp] (kl k;g . Rb)’
where Ci = i35 (2-8)

60-2
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Ficure 2. Dispersion surface constructions. (a) Projection on the plane normal to the crystal
surface which passes through O and G; () projection on the crystal surface; (¢) perspective of
the kinematic dispersion surface.

0, G, H, H', the origin and reciprocal lattice points.

4, B, C, D, wave points of vacuum waves.

ANy AD; B0 B B@' - wave points of crystal waves.

Al, A2, B, B?, BY, B%, branches of the dispersion surfaces whose asymptotic surfaces are
ng SgA’ ng S;izB’ SgB: SZB“

n,, 14, normal of crystal surfaces. o

A, B, wave points of mean value of crystal waves.

S50, S, §& and S5, spheres of radius |K| centred on O, G, H and H'.

Ay, Ag, By, Bg, By, By, intersections of n,, n, and Sy, S2,, Sty S5, Sty Sip.
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DYNAMICAL THEORY OF ELECTRON DIFFRACTION. II 495
From the condition (2-6) and equations (2-3), (2-4) and (2-7), we can obtain the following

amplitudes, . . ' . ‘
D, = 2 {#ib expi(kii—Kyo* Ry) + i expi(kif— Ky Ry)},
Dy, = 3 {fikexpi(kji—Ky R,) + 4 expi(kii— K, R,)}.

These are rewritten from the equations (2-24) and (2-7)

—C2 (C\C? _1
q)oozg{cg_%azcl_acz( )

ct  C'c? (-1 .
+Cil___Ci201__Cz( )IFCXPJ( 'ZA‘i“kf)%'ZB“KoonAB’“u'Rd)}, (2-10)

(29)

Pexpj(ki-Z,+kitZ,—Koy Z,y—u-Ry)

Czl CzZ CI CZ
? {C’zl CzZ Cl CZ
061062 Cl C2 (_l)z

Cal . 062 Cl _ 02 Ci

__1 . :
(=1) Yexpj(kf- ZA“*‘kf)lo’ZB“Koo'ZAB“u'Rd)

W exp (k- Z,+ ks Zy— Ko Zup—u-Ry)}. (211)

—Ciz  (C1(? ) e .
D=3 (oo b g g~V ¥ il 2 ki 2y Kup Zip—uR,)
% cre? i ¢ 1 i2
+Czl szcq Cz( 1) IIIlexp"(ko'ZA‘I"koo'ZB"”I<00'ZAB~‘1'I{¢1)}, (2'12)
ciic2 12 ' o '
D, 2{0‘1 C2 CT— CZ(_l)quexpj(kf)'ZA_l_kz){)'ZB—'KOO'ZAB—u'Rd)
ClezZ CICZ ‘

Fatagrga (Y epi( 2k 2y Koy Zyp—u Ry (219)
where Z ,, Z and Z,, are the thicknesses of the crystals A, B and the sum of them, and
R, is the special case of r, where it is normal to the exit surface.

Since the object of this section is to obtain the intensity distribution of well-focused
transmission microscopic images theoretically it is sufficient to evaluate the wave function
at the point r, on the exit surface of the crystal. The moiré pattern of an ordinary electron
microscopic image is formed by the interference of two waves @y (r) and @, (r). The dark-
field image of a moiré pattern is formed by the interference of two waves @, (r) and @,y (r).
If the whole wave ®yy(r), @,(r), Py, (r) and @, (r) passes through the aperture of the
objective lens and forms the image by mutual interference, the resolved lattice image of
two superposed crystals will be observed. The wave function of the moiré pattern in the
bright-field image therefore is written from equations (2-10), (2-13) and (2-4):

O(r,) = (I)ooexpj(Koo r,) +@ hCXPJ(Kh r,). - (2 14“)

8

The wave function of the moiré pattern in the dark- field i image is written from equations
(2-11), (2-12) and (2+4):

Dy(r,) = Dy exp j(Koy 1) + Qo exp (Ko 1,). (2-145)

The deviation from the Bragg angle is expressed by parameters named resonance errors.
These parameters are introduced here. For the crystal A, the resonance error is given by

th tit = T 1@ AD
€ quantity AB — AOAG =2t, or AP 40 — 2dA (2'15)
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as indicated in figure 2 (a), (¢). For the crystal B, two parameters are introduced, because
the transmitted wave ,(r) and reflected wave y,(r) in crystal A enter crystal B in direc-
tions differing by an angle 26,

BD = B B, =2, or B®BD—ead, (2-16)
AC = ByBy = 2t, or B®BW —ad,, (2:17)

where a prime () refers to the H’ plane of crystal B.
From the relation of a hyperbola and its asymptote, it is seen that

—dpdy=q% —dpdp =% —dgdg =g, (2:18)

dy=J(th+q0), dy=J(h+4h), dp=J(th+q3)- (2:19)

Then d,—dy=2d, dy—d,=2d, dy—d, —2d,, (2-20)
d, +d,=2t,, dp+dg =2t dg.+dg, =2t,. (2-21)

From the relation in figure 2 it is seen that

Yp—Yp = |8| cose—|h| = Ay,

t
_tB:{ 4 ——Stane}CosetanﬁBB%——%AytanﬁBB,?

tand,, (2-22)

, ¢
1y = {tanAﬁBA —Stan e} cose tanly,—1Aytanb,p,

where § is the normal distance between a wave point and a plane normal to the crystal surface
which passes through O and G and from (1-24) and (1-25) ¢ is given as

94 = Ug/2k /(cos by, cosb,) = p,/./(cosby, cosl,),
qp = U_,/2k/(cos 0,5 cos b)) = pp//(cOsOyp cOS ),
9y = U, 4/2k/(cos Oyp c030,p) = pp/J/(cOs b5 cOS b)), (2-23)

_ Ve _ Vo _ Vi
pA_m, pB_‘m> pB'_m'

In terms of Ad,,, which is an angle of deviation from Bragg angle, the resonance error is
written as .
2t = K,y sin 20 5/cos b,. (1-26)
The ratios of amplitudes shown in equations (2:10) to (2:13) are expressed in terms of
the parameter d, from the geometry of dispersion surface, as follows:

C=v o =dul —bs (2-24)
C§ = ¢/ 8¥ = dpy| — 15> (2-25)
CY = ¢4/8% = dy;| — b5 (2-26)

It is convenient at this stage to introduce mean values of the wave vectors in the crystal.
In figure 2 (a), 4, B, represent wave points for the mean values of the crystal waves.
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DYNAMICAL THEORY OF ELECTRON DIFFRACTION. II 497

From the geometry indicated in figure 2, it is seen that

ki =k,+(—1)id, (2-27)
k% = koo“" ( - l)j dB’) (2‘28)
ki =Ky +(—1)/dy =Ky +8+(—1)7dp, (2-29)

IK| = |K0| = |K00|a (2'30)
Koi = Koo +h—2t, KgO = Ky +8—2t,, th = K+ (g —h) +u, (2-31)
|DA| = [u| = |—2t,—2t,| = {|g| cose— |h|} tan 10, (2:32)

where K, Ky, k,, are mean values for the crystal waves.
Using the values of C, C¥, C¥, ki, k¥, and k¥ we rewrite equations (2-144), (2-145) as
follows:

O(r,) = Vexpj{ky Z,+Ky Zy—Kyy* (Zp—1,)}
1 . .
x| gz oxp (~id Z) —dpoxp (14, Z,))
4d, dy

gy exp (~idy" Zy) —dyy exp (idy Zy)} + 108 fexp (—id, Z,) —exp (id, 2}

% {exp (~idp Z;)—exp (idy Z,)}exp{(8 ~h-+u) -r,—u Ry |, (2:330)
Dy(r,) = ¥ expi{ky Z,+Kop' Zo—Kug* (Zap—To)}

<[4 exp (—id, ) —dyexp (id, Z) Hexp (—idy Zy) —exp (idy Zy)}

x exp (B —2ty) £y 20 R} fexp (—id, Z,) —exp (d, - Z,)}

><{dmexp<~jd3-zﬂ>—dmexp(sdB-ZB»expj{(g—ztA)-rd+2tA°Rd}]- (2:330)

(b) Intensity of moiré patterns

The current density of electrons is proportional to ®(r) ®(r)* |K|cosf,. Then the
intensity distribution of electron waves at the exit surface of the crystal corresponding to
the bright field image is expressed as

I=9(r,) O(r,)* |K|cosb, = (I,+1,) |¥|?|K| cos b, (2-34)
whereT
2
II:{ Z‘;sm227rd V4 }{ 3§sm22nd Z} (pA‘ZB) sin?2nd, Z ,sin?2ndyZ, (2-344)
dydp
I, = Acos 2n{(g¢ —h) -r,+a}, (2-34b)
A= dé’z)ﬁa J(B2+C?)sin2ndyZ,,
_ LB
ac-——27rtan o

B =2t,dpsin?2nd,Z, cos2ndyZy+d,tysindnd, Zysin2ndy Zy,
C =2t tpsin?2nd,Z  sin2ndy Zy—d,dgsindnd,Z , cos2ndy Zy.

1 In equation (2-34), (§—h+u)r,—u*R,is replacéd by (¢ —h)r,, because u is normal to the crystal
surface and the fringe concerned is on the exit surface of the crystal.
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Then term 7, given by equation (2:344), shows a uniform intensity and represents the
background of the image. The terms represented by

{1—(¢%/d3) sin?2nd, Z ;} (2-35a)
and {1—(g}/d%) sin? 2ndy Zz} (2:350)

are the intensities of the primary waves of crystal A and B respectively and the terms
represented by

(p%/d%) sin?2nd , Z, (2-364)
and (p%/d3) sin?2ndy Z _ (2-36b)

are the intensities of the reflected waves in crystal A and B respectively. Then the back-
ground of the image is formed by adding the products of the two primary waves and the
two reflected waves.

The term 7, represented by equation (2:345) gives the periodic intensity in the image.
From the equation (2-3456) one can easily understand that the image becomes parallel
lines which are normal to (g —h) directions, the intensity profile is represented by a cosine
curve, and the period of the fringe |r,,| is given from equation (2-345) as

|rm| = l/lg—hl (2'37)

From the shape of the triangle OGH shown in figure 2 (4), the spacing and rotation angle
of the moiré pattern can be seen easily, i.e. the spacing ¥, of the moiré pattern is given by

= 1/|g—=h[ = 1//(|g|*+|h|*—2]|g| |h| cose) (2-38)
and the rotation angle § of moiré pattern is given by
f=sin"!(|h|sine/|g—h|). (2-39)

The positions of the lines in the fringe depend on the value of the phase « in equation
(2-34b), i.e. on the parameters 4 (or ¢) and the thickness Z.

As can be seen in equation (2-340), the product of p, p decides the sign of the amplitude
of the fringe when the thicknesses are constant, i.e. from equation (2:23) the product of
the sign of the Fourier coeflicients of inner potentials V,, V_, decides the positions of the
maxima and minima of the fringe. If the sign of V, xV_, becomes negative the intensity
minimum of the fringe changes to a maximum. If these crystals have no centre of symmetry,
V, and V_, are expressed as |V| exp (—ig,) and |V_,|exp (—ig,) where @, and g, are the
phase angles of the crystals. In such a case, equation (2-345) is rewritten as

12 = A cos [QW{(g—h) rd+a}_(pg—(ph]s (240)
_ |24l 5] 2 (2) ¢in2
4 = djmJ(B +C?)sin?2ndy Z,,.
The lines in the fringe, therefore, are shifted by an amount of ; ‘
Il @+ @) (2. (2-41)

The intensity distribution of the electron wave at the exit surface of the crystal corre-
sponding to the dark-field image is expressed as

Iy = O(r,) O(r,)* |K|cos b, = (Ip+1I,p) [F|?|K]| cos b, (2-42)
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where
2 2
Ip,= (i) sin?2ndy Z, (1——ﬁsm227rd Z) (—j) sin?2nd,Z, (1—;1—251n227rd Z)
(2-42a)
I, = Ay cos 2n{(g —h) -r,+ap}, (2-420)
where Ay = 2APB_ B2 | C2)sinond, Z,,
djdgdy
Ll b
ap = 2ﬂtan C,’

where B, =—d,tysindnd,Z sin2ndyZ,—2t,dpsin?2nd,Z ,cos 2ndyZ ,
Cp=—d,dysindnd,Z, cos2ndyZy+2t,t,sin?2nd,Z , sin 2nd,Z .

The term I, given by equation (2-42a) shows a uniform intensity and represents the
background of the image.

The term I,,, represented by equation (2-425) gives the periodic intensity in the image.
The physical meaning of each term follows from the discussion of the equations (2-34)
for the bright-field image.

(¢) Rotation moiré patterns

When the two crystals concerned are of the same kind and the relative rotation angle ¢
about an axis normal to the crystal surface is small, the fringe is called a ‘rotation moiré
pattern’. If the thicknesses of both crystals are the same, the equation (2-34) is written as

I= (I,+1,) |¥|?|K|cos b, (2-43)
4
where I, = { %ismz 27m’Z} {1)4 sin* 2w dZ, (2-43a)
I, = Acos 2n{egry, _y+a}, (2-43b)
where A= f’ D sinondZ. /(B2 +C?),
= l—tan‘l B
T
where B = 2dtsin4ndZ sin 2ndZ,
C = 28?sin3 2ndZ — d?sin 4ndZ cos 2ndZ,
because ly=tp=—tp=1t dy=dy=dp= a’,} (2:44)
Zy=Zy=2Z, py=pp=1>.
The spacing of the moiré pattern is given by
__ 9% . Y 1 .
S, = gsmle T ¢’ where a, I | (2-45)
and the rotation angle is f =sinlcosie = im. (2-46)

Figure 3 shows how this function varies with d (or ) and dz in the range —1 <eg.r <1,
i.e. —a,/2 <r < a,/2. This function is periodic in dz and ¢gx with period § and 1 respec-
tively. The full and dashed curves refer to ¢ positive and negative respectively. The intensity

61 VoL. 253. A.
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profile of the fringe of two superposed crystals with the same thickness is given by the
condition Z = C, where C is constant. As was shown in figure 4 of part I, a line of Z = C
passes through the origin d = 0 in the diagram of co-ordinates d against dZ. Then the moiré
patterns of the crystals with various thicknesses and in various conditions are easily deduced
from the curves shown in figure 3.

t=0 0-51¢ 0759 0-95¢ 1124
d=q 87 87 87 Ba
dZ=0
16 ll \\ // \\ﬁ \\/0 &\> &
3
1-6 \/— /’-\\\/\ //"‘ //*\ //,\\
T AL LA S A
4 e e ]
i6 S \ / \ / \ ZL
5
& o >, VRN o
8
16

-05 0 +05-05 0 +05-05 0 +05-05 0 +08-05 0 +05
g-hr
Ficure 3. Theoretical intensity profile of the bright-field image of the rotation moiré pattern of
two superposed crystals with the same thickness Z as a function of egr (= g —h-r). The different
curves correspond to various values of d (or ¢) and dZ. At d = ¢, (¢ = 0), i.e. at the Bragg re-
flecting position, it can clearly be seen that the fringe disappears whenever the thickness
becomes 7/4¢ (half of extinction distance). For d + ¢, i.e. for deviations from the Bragg angle,
the intensity maxima shift gradually with increasing thickness and wherever the thickness
becomes 7/2¢, the intensity maxima shift by half the fringe spacing. The full and dashed
curves refer to ¢ positive and negative respectively.
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At the exact Bragg angle (¢ = 0), the intensity profile of the fringe is given by
I = cos*2mgZ+-sint 2mgZ —} sin2 4mqZ cos 2megr. (2-47)

In figure 3 the profiles of the fringe at the exact Bragg angle are given by those on the
co-ordinate d = ¢. The intensity of the fringes changes with increase of thickness. The fringes
show maximum and zero intensity whenever the thicknesses become n/8¢, where n is
1,2,3, ..., and do not change their position. A schematic diagram of the fringe is illustrated
in figure 4 (a). Intensity minima appear on the portion where the centres of symmetry
of both crystals are superposed, i.e. for simple crystals the position of superposition of atoms
in each crystal.

234“/e 1234“/6 1234“/5

Wi

(@) (v) ©
Ficure 4. Schematic diagram obtained by a study of figure 3 showing the variation of the fringes
with thickness and deviation from the Bragg angle: (¢) at exact Bragg angle ¢t =0; () for a
deviation from the Bragg angle ¢ = 0-5¢; (¢) £ =¢. 1/2q¢ is the extinction distance.

g

S

o

N ;Q“]w

For deviations from the Bragg angle, the profiles of the fringes are given by those with the
co-ordinates ¢ & 0 (or d = ¢) in figure 3. The profile and position of the fringe vary both
with the deviation from the Bragg angle and with the thickness. In figure 4 (6) and (¢),
the variations of the fringes due to the increase of thickness are schematically indicated for
the case of £ = 0-5¢, t = ¢. As can be seen in figure 4, for a deviation from the Bragg angle
the fringes appears at a position varying with the thickness; moreover, they do not disappear
at the thickness of n/4d (n = 1, 3,5, ...).

The moiré patterns of a bent plate-shaped crystal are formed on extinction contour bands.
Along the middle line of an extinction contour band the Bragg condition is exactly satisfied
and near the edge of the contour, it is not exactly satisfied. Therefore, the variation of the
fringes due to deviation from the Bragg angle will be seen on an extinction contour band.
As is shown in figure 5, if a crystal is bent into the form of a cylinder the Bragg condition
is exactly satisfied at the point 4, located in the centre of a contour line, and the Bragg con-
dition is not exactly satisfied at the point B, located at a distance S from the point 4. Asin
the case of equation (37) of part I, distance is proportional to the parameter £, the deviation
from the Bragg angle. Therefore it is easy to deduce the moiré fringes on an extinction contour

band from figures 3 and 4. In figure 6 fringes of two bent crystals whose mode of bending is
61-2
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as shown in figure 5, i.e. convex to the incident beam, on an extinction contour band and
its subsidiary are schematically illustrated for four different thicknesses. The fringes
appear as parallel lines nearly perpendicular to the lattice planes on which double Bragg
reflexion has taken place.

Ficure 5. Cross-section of two crystals bent into the form of a cylinder
indicating the mode of Bragg reflexion.

(g-h)

4
8q

i ———

F1cure 6. Schematic diagram of moiré fringes on an extinction contour band obtained by a study
of figures 3 and 4 showing the change of appearance of the fringes of a bent crystal with the mode
of bending as shown in figure 5, as the thickness is varied. The lines represent the positions of
minima in the intensity profile and the thickness of the line represents the intensity of the
profile. The equally spaced thin lines are those connecting the superposition of centres of
symmetry of each crystal, where the mass thicknesses in both crystals show a certain maximum
or minimum in simple crystals. Thickness 1/2¢ corresponds to an extinction distance.

The lines represent minima in the intensity profile and the thickness of the lines represents
the intensity of the lines. The equally spaced thin lines whose spacings are given by a/e
represent the position of superpositions of the same kinds of centre of symmetry in each
crystal, one of which is adopted as the origin in the present consideration. As is well known,
in a crystal with very simple structure, lattice points are located generally at the centre
of symmetry. Then if the electron microscopic image of a moiré pattern of the crystal
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lattice represented the superposition of the mass thickness in each crystal, the fringes would
appear exactly on the thin lines.

As can be seen in this diagram, at the thickness of 1/8¢ which is a quarter of the extinction
distance, the fringe along the middle line of the extinction contour band gives maximum
contrast and appears exactly on the thin lines, but near the edge of the contour the fringes
shift gradually and contrast decreases. The shift of the lines is equal to the spacing of the
thin lines near the edges of the contour. On the middle line of the subsidiary extinction
contour band, the fringe with maximum intensity appears not on the thin lines but
between them. From the centre to each edge of the subsidiary extinction contour band, the
lines shift by half of the spacing.

At the thickness 1/4¢, fringes do not appear along the middle line of the extinction
contour and the fringes near the edge of the contour shift by an amount equal to half
of the spacing and contrast decreases on both edges of the contour.

At the thickness of 3/8¢, the fringe along the middle line of the extinction contour gives
maximum contrast and appears exactly on the thin lines but near the edge of the contour
the fringes shift gradually in a different way from that for the thickness 1/8¢. At the edge
of the contour, however, the shift is recovered and the fringes appear on the thin lines again.

At the thickness 1/2¢ the fringes do not appear along the middle line of the contour and
near the edge of the contour the contrast of the fringes increases and the position of the
fringes shifts gradually. At the edge of the contour, the shift of the fringes becomes the same
as the spacing of the thin lines.

The variation of the fringes on the subsidiary contours for each thickness is nearly the
same as for the thickness 1/8¢.

The variation of the fringes between the thickness 0 and 1/2¢g described above is repeated
for thicknesses between 1/2¢ and 1/g, if the absorption is neglected. In general, the fringes
have some shifts in the region where the intensity anomaly is observed.

Between two contours, such as the principal and subsidiary contours or contours corre-
sponding to (hkl) and (kkl) or (hkl) and (2k 2k 21), stepped structures of the fringe are
observed.

The intensity distribution of the dark-field image of a rotation moiré pattern for the
case that both crystals have the same thickness is given from the equation (2-42) as follows:

I, = (Iip+1p) [¥|? K| cos b, (2-48)
2 2
where I,—=2 (fg) sin? 27rdZ(l——g;§sin2 27rdZ), (2-480)
I, = Acos2m(egry _p), (2-480)
2
where 4= %‘ Cpsin 2ndZ,
_ b By
o= 2ﬂtan C, " 0,
where B, =0,
C, = —d?sindndZ cos 2ndZ —2¢?sin3 2ndZ,
because ly=lp=—tp=1t dy=dy=dp=d,

ZA:ZB:Z: ba=pp=p.
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The spacing of the moiré pattern is given by
% % 1 .
7> = T5in e ¢’ where - ¢, = 8| (2:49)
and the rotation angle is f =sin"lcos}e = im. (2-50)

Figure 7 shows how this function varies with 4 (or f) and dZ in the range —3 <¢g.r < %,
i.e. —a,/2¢ <7 < a,/2. This function is periodic in dZ and egx with period 4 and 1 respec-
tively. By comparing figure 7 with figure 3, it can easily be seen that the intensity maxima
of the fringes in the dark-field image do not always appear at the positions of intensity
minima of this fringe in the bright-field image.

d=q 12
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Ficure 7. Theoretical intensity profile of the dark-field image of the rotation moiré pattern of two
superposed crystals with the same thickness Z as a function of ¢g: 7(=g —h-r). The different
curves correspond to various values of 4 (or #) and dZ. The full and dotted curves refer to ¢
positive and negative respectively.
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At the exact Bragg angle (¢ = 0), the intensity profile of the fringe is given by

I, = sin*4mqZ — % sin 2mqZ sin 8w qZ cos 2me gry, _ . (2-51)

As can be seen in figure 7, at the exact Bragg angle the intensity maxima of the fringe in
the dark-field image appears at the same position as the intensity maxima in the bright-
field image. Since the contrast of the dark-field electron microscope image of a bent plate-
shaped crystal can be deduced from figure 7 as has been discussed in the case of the bright-
field image, a detailed discussion will be omitted.

(d) Parallel moiré patterns

When the two crystals concerned are not of the same kind and the relative rotation angle
¢is zero, the fringe system is called a ‘parallel moiré pattern’. Then the intensity distribution
of the parallel moiré pattern is given by the equation (2-34) for the case of ¢ = 0.

The spacing of the moiré pattern can be found from equation (2-38) as

1 agay, 1

1
S = = , where a,=-——, a,=5 2:52
" 8|18 ~ a,—q, C L (252)
and the rotation angle of the moiré pattern is given from equation (2-39) by
g=o. (2+53)

In order to know the intensity distribution of a parallel moiré pattern, numerical calcula-
tion has been carried out for the case of a film of palladium on gold.

In order to simplify the numerical calculation it is assumed that the thicknesses of the
films are the same.

Figure 8 shows how the intensity distribution varies with dpy (0r tpq) and dpyZ in the range

. aga
0<(g—h)'r<1, ie. 0<r 424,
a,—ay,

The variation of the intensity profile is not as simple as in the case of a ‘rotation moiré
pattern’. Though the thicknesses and orientations of both films are the same, the extinction
distances of electron waves and the orders of deviation from the Bragg angle are different
for each crystal. Then, even if the thickness of each film is given by Z = 1/2dp; this is not
equivalent to 1/2d,, and even if the palladium film is at the exact Bragg angle (fpq = 0),
the gold film is not as can be seen from the equation (2-22).

As the mode of the fringes is determined by the combination of the configurations of both
crystals it is quite natural that the fringes have a complicated structure. If a film consisting
of layers of palladium and gold bends into the form of a cylinder as shown in figure 5, the
variation of the moiré pattern due to the deviation from the Bragg angle can be seen at the
same time. Figure 9 shows the variations of the fringes for three different thicknesses. The
fringes appear as parallel lines perpendicular to the (¢ —h) direction.

The lines represent minima in the intensity profile and the thickness of the lines represents
the intensity of the lines. Equally spaced thin lines whose spacing is given by a,4,/(a,—a,)
represent the superpositions of the same kinds of centres of symmetry in each crystal, one
of which is adopted as the origin in the present consideration. Thin lines, therefore, indicate
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the positions where the mass thicknesses in both crystals show certain maximum or minimum
in simple crystals.

At the thickness 1/8¢, the fringes along the middle line of the extinction contour band
(of palladium) have strong contrast, but away from the middle line the fringes have greater

- 9 10 I
dy=qy g =/ B S

azZ=0
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Ficure 8. Theoretical intensity profile of the bright-field image of the parallel moiré pattern
formed by the superposition of a palladium film on a gold film. The thicknesses of the films are the
same. The different curves correspond to various values of d (or ¢) and dZ of the palladium film.

spacing and smaller contrast, and near the edge of the contour the fringes again have strong
contrast. At the edge of the contour the fringes have small contrast and increased spacing.

At the thicknesses 2/8¢ and 3/8¢, the fringes do not appear along the middle lines of the
extinction contours and the fringes near the edges of the contours have slightly increased
spacings.
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(g—h)
P t~

Ficure 9. Schematic diagram of the parallel moiré pattern formed by the superposition of a palla-
dium film on a gold film of the same thickness showing the change of appearance. An arrow
indicates the position of the palladium film at the exact Bragg angle. Thickness 1/4¢ corresponds
to half of an extinction distance of the electron wave in a palladium crystal.

3. SUPERPOSITION OF TWO PLATE-SHAPED CRYSTALS WITH
VACUUM LAYERS BETWEEN THEM

(a) Wave function

Superposition of two films with a vacuum layer between them has often been observed
in electron microscopic images. In this section the image of crystals in such a condition
is treated.

Let us assume here for simplicity that the wave vectors of the beam are nearly normal to
the boundary surface so that the normal components of all wave vectors are large compared
with the difference among themselves.

In order to interpret the various kinds of moiré pattern formed by the two crystals with
a vacuum layer between them, it is sufficient to interpret the following two kinds of
images.

As shown in figure 10 (a) and () the crystal B is tilted to the crystal A with an angle o
and twisted through an angle e. The rectangular co-ordinates xyz are taken as shown in
figure 10. Figure 10 (a) shows the case where the successive Bragg reflexions take place in
the planes nearly parallel to the yz plane. Figure 10 (5) shows that successive Bragg
reflexions take place in the planes nearly parallel to the xz plane.

In both cases, the primary and the secondary waves in vacuo which have passed through
the crystal A are given, from the equation (11) of part I as

Oy(r) = D, expj(KO'r),}

i 2:54a
(I)g(r) = Q@ expj(K, 1), ( )

where @; and @, are amplitudes and are given by equation (16) in part I. When these two
waves enter crystal B through surface (C) and one of the lattice planes % of the crystalis
nearly at the Bragg angle to the wave ®y(r), two groups of four waves ¢} (r), ¢§,(r) and
¢io(r), #iy(r), ¢ = 1,2, are formed corresponding to the waves @y(r) and @, (r).

62 Vor. 253. A.
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Ficure 10. Two arrangements for the lattice planes of two plate-shaped crystals superposed with
a vacuum layer between them and the waves in the crystal and the vacuum. Rectangular
co-ordinates are taken as follows: ¥ and y are parallel and normal directions to the line in which
the two crystals A and B meet, and Z is normal to the xy plane. The two kinds of lattice planes
are indicated by the yz plane and the xz plane as indicated by shading in (a) and (4) respec-

tively. The xy plane is parallel to surface ().

They are expressed as

Poo(x) == Pho exp i (Ko *
Pou(r) = Py exp (K,
Pan(r) = P expj(ky,-
Peo(T) = P expj(kio-

(2-55)

When these eight waves pass into the vacuum through the surface it is easy to see that
they become four waves, because the surface 4 is parallel to the entrance surface c.

They are expressed as

Oy(r) = Dypexpj(Kop-
Dy (1) = (I)Oh exp (K-
(I)glz (I') CXp J (Kglz
(

(I)gO r)

e

= (Dgo exp j (Kgﬂ

"'3

b

r),
|
) (2:56)
)

The amplitudes ¢}, Pors Pans Po0s Loos Poss Py and D are determined in terms of ‘¥ by
the boundary conditions on the planes ¢ and 4. In the present interpretation, it is
assumed that the electron waves enter the crystals nearly normally. As the tangential con-
tinuity of the wave vector implies continuity of normal derivatives, the boundary conditions

on ¢ and d surfaces are expressed as
Dy(r) = S dfolr.)
0= 3 g(r);
D,(r,) = ;¢§0(rc)a
0= ZZ%h(rc)-‘

on the ¢ plane,

(2:57)
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3 fia(6) = (),
2 $n(Ta) = Pon(Ta),
lz¢‘igh(rd) = @y (r,),
5 folr) = Duals)

By referring to equations (2-54), (2:55) and (2:56), we can obtain the amplitudes
¢60’ ¢(i)h) ¢‘igh’ ¢‘igO> (DOO> q)()h, (Dgh and (Dg()’ :

+ on the d plane. (2-58)

.
4

Ficure 11. The relation between the wave vectors iz vacuo and the wave
points corresponding to the cases of figure 104 (a) and figure 105 (b).

®,, and q)gh which are the amplitudes of the two waves contributing to the bright-field
image of the moiré pattern, are given by '
—C¢ C1C? (—1) ‘(10
Dy = ; [Cg—g‘g CcT—C? ( Ci ) WexpjlkyZ,+kjy Zz—Kopy*Z 4}
+ ¢t ce? (—-1)
ci—cgct—c? ¢
—_ClC2 C1C2 . o
(I)gh = Z I:Cl _gczg cT—c2 (—1)Wexpj{ki-Z, + Kk} Zp—Kyy' Z,5—2t - Z
t & g
Cic: (C'c?
C;—C2(C'—C?
where Ci = ¢i,/4i, and z, is the thickness of vacuum layer. From the dispersion surface
constructions shown in figure 11 (¢) and (b) corresponding to the cases shown in figure
10 (@) and (b) the resonance errors are given by the quantities

AB =2t,, BD=2t, AC=2t, (2-61)

62-2

Vexpi{k-Z,+K3y Zp—Ky ZAB}] , (2°59)

__rd. U}

v

+

(—=1)iWexpi{k}-Z,+K3)Z;—KyyZ,p—2t, Z,—1, u}:l: » (2;60)
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and the quantity u is given by
lu| = |DA| = | —2t,—2t,]. (2-62)

The relations between 2t ,, 2t; and 2t are

—tgcosa’ = {taé‘:?BA-—stan e} cose tanfpp+ Ay tan by,
bt [t _ (2-63)
tpcosa’ = {tan " —stan 6} cose tan 0y, — Ay tan b ,p,
Ay = |g| cose—|h|,
for the case of figure 11 (a) and
sin (f—0 . " ”
—ty = £, =S54 (I sine)-+ (8] - B cosa’)?),
ty = 1,2 05a) yi(insin )2t (1] — B cosa)?, (264)

2cosfy,

cosa” = cosa’ cose,

for the case of figure 11 ().
By using the relations (2-18) to (2-21) and (2:27) to (2:32) the wave function corre-
sponding to the bright-field image of the moiré pattern is given by

Op(r,) = Dyo(ry) +Dy(r,)
=Wexpj{ky Z,+Ko Zp—Kyo' (Z45—1,)}
1 . .
X [m {dypexp (—jd - Z,) —dyexp (jd - Z,)}
40p
X {dpy€xp (—idy Zp) —dyy exp (i - Zp)}+ 2422
44p
x{exp (—jd, Z,)—exp (jd, Z,)}{exp (—jdp  Zy) —exp (jdp- Z,)}
xexpj{(g—h+u) -rd—(QtA-zv+Rd-u)}]. (2-65)

In the present case the focus cannot be adjusted to the whole portion of the exit surface
d because of the inclination of crystal B. But, let us assume that the focus is adjusted to
a point on the exit surface, which is an intersection point of the normal to the exit surface
passing through the origin and the surface, and the interference fringes formed on theexit
surface can be projected to the image plane (see figure 11, part I).

(b) Intensity of moiré patterns
The intensity distribution of the electron wave at the exit surface of the crystal is expressed
from equation (2-65) as I= (I+1,) |¥]?|K| cos b, (2-66)

The term 7, gives uniform intensity and is expressed in the same form as equation (2-34a)
and term 7, gives the periodic intensity and is expressed as

I, = Acos2n{(g —h+u) r,—(2t,-Z, +R, - u)+a}, (2-67)
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where 4 and « have the same form as equation (2:345). Then the spacing of the moiré
pattern is different from that for two closely superposed crystals.
For the case shown in figure 10 (a), equation (2-67) is replaced by
I, = Acos2n{(g—h) -r,—2t,-Z,+a} (2-68)
because u is perpendicular to the image plane. The spacing of the fringes, then, is given by

1
P = .
" {lg—h[—-2[t,]|a}

(2+69)

ty%0

Ficure 12. Two crystals of the same kind superposed with a wedge-shaped vacuum layer between
them and the corresponding electron microscopic image. (a) ¢, = 0, no fringe. (b) ¢, 0, fringe
with the spacing 1/2¢,a’.

By comparing equation (2-68) with (2-345) it can easily be seen that the fringes appear
at a position shifted by an amount of 2¢,Z, because of the vacuum layer. If the two crystals
are of the same kind and inclined with no twist (g=h) the spacing of the fringesis given by

o L _ Acosl,
"o 2t,a’ sin20za AG°
Then, the spacing varies with the angle of inclination of the two crystals and the deviation
from the Bragg angle. At the exact Bragg angle no fringes can be observed, as shown in

(2-70)

figure 12.
For the case shown in figure 10 (5) u is not perpendicular to the image plane. The spacing
of the fringes then is given by

I =1[{—|g|+|h|cosa’—2|ty|sina’+ (|h|sina’ —4 |t,| +2]|t,]) tana’}, (2:71)
where ¢ = 0.
If both the lattice planes are at the exact Bragg angle (¢, = ¢, = 0) the spacing of the
fringes is given by
%, = 1/{(—|g|+|h|cosa’) +|h|sina’ tana'}. (2:72)
The first term of equation (2-72) corresponds to the spacing of the parallel moiré pattern
produced by the lattices whose spacings are given by 1/|g| and 1/|h|cos«’ because the
spacing of such a moiré pattern is given, from equation (2-52), as
&, = 1/{—|8|+|h|cosa’}. (2-734)
62-3
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The second term of equation (2-72) corresponds to the spacing of the interference fringes of
the electron wave produced by the phase difference due to the vacuum layer between the
crystals A and B, because the spacing of such fringes is given, in the present approximation,

as S, = 1/{|h|sina’ tana'}, (2:73b)
where |h| = 2sind4/A (see figure 13).

Ficure 13. Configuration of two crystals superposed with a wedge-shaped
vacuum layer between them: ¢, = 0, £, = 0.

4. RESOLVED LATTIGE IMAGE OF TWO SUPERPOSED CRYSTALS

As is pointed out in §2 (@), if the whole waves which have passed through two crystals
contribute to the imaging, the resolved lattice image of two crystals will be observed. The
wave function corresponding to the image is given by

Dy (1) = Doo(T) -+ Dy (1) + Do (1) + Dy (1), (2:74)
where @y (r), @p,(r), O,(r) and @, (r) are given by equations (24), (2:10), (2:11), (2:12)
and (2-13).
The intensity distribution of the electron wave at the exit surface of the crystal is given by
Ip = Qg(r,) DE(r,) |K| cosy = (I, +1,+ I+ 1+ ;) [P[? [K] cos b, (2-75)
where I, =4,
I, = Bsin2n(g-r,+a),
I, = Dsin2n{(¢ —h) r,+y},
I, = Esin27n{(g —2h)-r,+0},
and A, B,C, D, E, a, f,y and 0 are functions of ¢, ¢y, {4, g, Lty Z, and Zp.

In figure 14 two kinds of intensity distribution of the resolved lattice image of a rotation
moiré pattern can be seen. The angle of rotation is & = tan~!} + 14° and the spacing of
the latticeis 10 A. Figure 14 (a) shows the intensity distribution at the exact Bragg condition.
The moiré fringe appears in the direction normal to the (g —h) direction and the fringe of

spacing 10 A appears in the direction normal to the h direction which is the image of the
crystal lattice at the exit face. The spacing of the moiré fringes is 20 A. Figure 14 (b) shows
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Ficure 15. Moiré pattern of a cupric sulphide crystal showing the shift of the fringes near the centre
of an extinction contour band. See marks <-. (Magn. x 400000.)
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Ficure 16. Moiré patterns of cupric sulphide crystal on two extinction contour bands 10-0 and
10-0 showing the stepped structure between them. (Magn. x 400000.)

Ficure 17. Moiré patterns of a cupric sulphide crystal on a principal contour (4) and its neigh-
bouring weak contours (B), showing the stepped structure between them. (Magn. x 400 000.)

(Facing p. 512)
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Ficure 18. Moiré pattern from a specimen consisting of a palladium single crystal grown epitaxially
upon a gold single crystal. (Magn. x 300000.) (Courtesy Bassett, Menter & Pashley 1958.)
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Froure 19. Overlapping crystals of platinum phthalocyanine showing crystal lattice fringes resolved
and a moiré pattern formed in the region of overlap. (Magn. x 950000.) (Courtesy Menter

1958.)
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the intensity distribution for a deviation from the Bragg angle (d = 9¢/8). Moiré fringes
appear in the direction normal to the (g —h) direction but the direction of the fringes
of spacing 10 A does not appear to be parallel to the lattice planes of either of the two crystals.
The intensity of the fringes of spacing 10 A however, still appears in one direction. The
spacing of the moiré fringes becomes 40 A.

Ficure 14. Intensity distribution of the resolved lattice image of rotation moiré patterns
|g&| = |h| = 1/10A-1, o = tan~! } = 14°, dZ = }. (a) At the Bragg angle d = g, (b) at the deviation
from Bragg angle d = 9¢/8. The thickness of each crystal is 1/84. '

5. COMPARISON WITH EXPERIMENT
(a) Rotation moiré patterns

According to the foregoing interpretation, we should observe the anomalies in contrast
of moiré patterns at positions deviating from the Bragg angle.

Figures 15, 16 and 17, plate 7, are electron microscopic images of a cupric sulphide
crystal which grew naturally on the surface of copper at 450°C by reaction with
saturated sulphur vapour. The diffraction pattern indicates that this crystal consists of
two layers twisted with respect to each other. On the extinction contour bands, which are
formed by the Bragg reflexion, moiré patterns can be seen clearly.

In figure 15, the fringes of the moiré pattern shift near the centre of an extinction contour
band which is indicated by arrows. The mode of the shift of the fringe is similar to that for
the thickness between 1/8¢ and 2/8¢ shown in figure 6. Figure 16 shows the moiré pattern
on two extinction bands 10-0 and T0-0. From the small separation of the bands, it can
easily be seen that the crystal is severely bent. The moiré pattern, then, appears in a narrow
region along the contour bands. A stepped structure between the fringes on the two bands
can be clearly seen.

Figure 17 shows the moiré patterns on a principal contour (4) and its neighbouring weak
contour (B), which may correspond to a subsidiary maximum of the electron diffraction
pattern. The stepped structure which is predicted in figure 6 can be seen between these
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two moiré patterns. The thickness of the present crystal and some of the indices of the
extinction contours are not known for the case of figures 15 to 17. But from the separations
of subsidiary maxima of electron difiraction spots (see Hashimoto 1954; Uyeda et al. 1954)
which are often observed in the electron diffraction pattern of CuS film prepared under
similar conditions, the thickness of the film is estimated to be 200 to 400 A. As the thickness
of the film 1/8¢ corresponds to 90 and 140 A for 11-0 and 10-0 reflexions of CuS crystal,
the thicknesses of the double-layer films are given as 180 and 280 A. Then the estimated
thickness coincides with the thicknesses 1/8¢ ~ 2/8¢4. The present theory, therefore, seems
to explain essentially the present observation.

(b) Parallel moiré patterns

Figure 18, plate 8, which was taken by Bassett e/ al. (1958) is an electron microscopic
image of a moiré pattern from a palladium single crystal grown epitaxially upon the (111)
face of a gold single crystal. The pattern varies from one region to another owing to the
variation in reflecting condition arising from buckling of the specimen. The brightnesses
of the portions labelled 4 and B may suggest that they are in the exact Bragg reflecting
position and far from it, respectively. Figures 8 and 9 suggest that no fringe is often observed
for the palladium-gold film at the exact Bragg angle. For example, if the thicknesses of the
films are the same and are equal to 3n/16¢q, 4n/16g, n = 1,2, ... (which correspond to 30 nA,
40nA for the reflexion 022), no fringes and a rather dark band are observed at the exact
Bragg reflecting position. Then there may be no fringes in the portion 4 due to its optimum
thickness. Bassett ¢f al. (1958) have pointed out that the observed value of the spacing of
parallel moiré patterns show considerable deviation from the mean value, which differs
by more than 10 9, from the value calculated from the diffraction patterns. As was discussed
in§ 2(d), the spacing anomaly in parallel moiré patterns should be observed by the variation
of the Bragg condition. The present theory can predict that if the crystals are bent or are
not of uniform thickness, there can be up to a 50 9%, variation in spacing. In figure 18, it
is possible to detect anomalies of spacing and intensity in the region between 4 and B. It
is difficult to discuss all the anomalies quantitatively because of the presence of dislocations
and the unknown thickness of the specimen. However, some of the anomalies of inten-
sity and spacing in the region between 4 and B can be expiained by the present theory.

(¢) Resolved lattice images of two crystals superposed

Figure 19, plate 8,is animage of overlapping crystals of platinum phthalocyanine taken by
Menter (1958). The two crystal lattice fringes of the (201) plane and a moiré pattern can
be seen. The directions of the two crystal lattice fringes and the moiré pattern are indicated
by arrows, 4, B and C. It can clearly be seen that the crystal lattice fringe in the region
of overlap is similar to that shown in figure 14. Though the thickness of each crystal is not
known, by referring to the result shown in figure 14, it may be concluded that the crystal B
is on the exit side for the electron wave. The present theory, therefore, seems to explain
the present observation.

6. CoNCLUSION

The present theory has explained the fine structure of the moiré pattern satisfactorily
and, therefore, it seems to be essentially correct for the interpretation of the moiré pattern.
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Dowell et al. (1956) shows that the rotation moiré pattern may represent the Patterson
function. Cowley & Moodie (1959) derived this result from much more general considera-
tion and discussed the possibility of structure analysis of the crystal by using the moiré
pattern. According to the present theory, their conclusion holds when the crystals are set
at the exact Bragg angle and the crystals are thin enough. In such cases, the intensity
distribution of the moiré pattern is expressed from equation (2-47) as

I=A,+BV;cos2meg T, (2-76)
- 4
where A, =1+ (/I—EZVg) R
1 /27 \?

If many sets of moiré patterns corresponding to #k0 reflexions are taken under the same
condition and superposed at the original situation the integrated intensity distribution of
the fringes is given by

1
P(xy) :E[Bg %Akk%—% % [V |2 cos 2m{hx + ky}]. (2:77)
As > > A,, gives a uniform intensity distribution equation (2-77) gives in fact a Patterson
KK

distribution.

For a thick crystal, the approximation of equation (2-76) holds no longer. In such a case,
it is necessary to obtain the corresponding fringes with amplitudes |V;o|? from the observed
fringes of amplitudes 3{(sin 27) (V,;,/AE)}? by using the method described at the conclusion
in part I.

The authors would like to express their sincere thanks to Professor K. Tanaka and
Professor R. Uyeda for encouragement and helpful discussion, and to Professor A. H.
Cottrell, F.R.S., for his help in facilitating the publication of this paper. We would also
like to acknowledge our thanks to Dr J. M. Cowley and Dr J. W. Menter for their interest
and helpful discussions and to Dr J. W. Menter, Dr D. W. Pashley and Mr G. A. Bassett
for providing copies of their micrographs.
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SZ7IGURE 15. Moiré pattern of a cupric sulphide crystal showing the shift of the fringes near the centre
zo  of an extinction contour band. See marks <-. (Magn. x 400000.)

FIGURE 16. Moiré patterns of cupric sulphide crystal on two extinction contour bands 10-0 and
10-0 showing the stepped structure between them. (Magn. x 400000.)

PHILOSOPHICAL
TRANSACTIONS
OF

"IGURE 17. Moiré patterns of a cupric sulphide crystal on a principal contour (4) and 1ts neigh-
bouring weak contours (B), showing the stepped structure between them. (Magn. x 400000.)
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T1GURE 18. Moiré pattern from a specimen consisting of a palladium single crystal grown epitaxially
upon a gold single crystal. (Magn. x 300000.) (Courtesy Bassett, Menter & Pashley 1958.)
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IGURE 19. Overlapping crystals of platinum phthalocyanine showing crystal lattice fringes resolved
and a moiré pattern formed in the region of overlap. (Magn. x 950000.) (Courtesy Menter

1958.)
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